The OthelloZoo manual

Stéphane Nicolet <cassio@free.fr>

Draft 0.3 (22 December 2010)

Contents
1 Introduction
2 Architecture

3 Getting connected to the zoo

3.1 Comnnecting e
3.2 Disconnecting Lo
3.3 Thezooserver

34 Examplecode L L

4 The OthelloZoo protocol

4.1 Command syntax : how to send action parameters to the zoo?

4.2 Listof commands
4.3 Results set : how to read the results of the zoo?

4.4 Anexample of session

5 Commands reference

5.1 Parameters common to many commands
5.2 Basic master actions Lo oL
5.2.1 the ADD action
5.2.2 the STOP action
5.2.3 the STOP_ALL action
5.2.4 the GET_RESULTS action
5.3 Basic calculator actionso
5.3.1 the GET_WORK action
5.3.2 the STILL.NEEDED action
5.3.3 the LCANT_SOLVE action
5.3.4 the SEND_SCORE action
5.3.5 the LQUIT action
54 Advanced actions L
5.4.1 the ADD_AND_GET_RESULTS action.
5.4.2 the STOP_AND_GET_RESULTS action
5.4.3 the ASKER_TAKES.IT action

5.4.4 the ASKER_ TAKES IT_AND_GET_RESULTS action

5.4.5 the GET_-WORK_AND_GET_RESULTS action
5.4.6 the STILL_LNEEDED_AND_GET_RESULTS action . . .
5.4.7 the SEND_SCORE_AND_GET_WORK action
5.4.8 the PING action
54.9 the KEEP_ALIVE action
5.4.10 the CHECK_PREFETCH action
5.4.11 the VIEW action

S O ooy O

© 0 N 9

6 Appendix 14

6.1 Jenkins’s hash function, in Pascal00 o000 14
6.2 Jenkins’s hash function, in PHP 14
6.3 Jenkins’s hash function, in Javao 16

1 Introduction

Wouldn’t it be nice if we could use the power of remote computers to play othello? There are
thousands of idle computers out there on the Internet, and none of them is used for doing really
interesting and funny stuff, like solving othello endgames faster, and the like. This document is the
description of such a grid system, called the OthelloZoo.

2 Architecture

The OthelloZoo is organized around an abstract database of othello positions which serves as a
shared memory for othello clients. Programs can post positions to the zoo, seeking help from other
othello clients to solve the positions they posts, and retrieve the results once the positions are
calculated.

Who could use that ?

I started the project with the aim of writing a massively parallel version of Cassio, a quite complete
othello program running on Macintosh, to speed up its endgame calculation by a factor of ten.
After the idea of the initial project was presented to the othello community, other usage patterns
appeared to use the grid concept for the game : cracking or solving the game [Jan de Graaf]; make
better internet clients for studying the transition between openings and endgame [Michele Borassi].

What kind of programs can connect to the zoo ?

There are at least three natural kinds of programs:

e Pure consumers: A consumer program will just post jobs to the zoo and listen for the answers,
without sharing their computing power. Such a client could be used, for instance, in PDA
or iPhone othello program to accelerate endgame calculations, as the processors of these
machines typically calculate an order of magnitude slower than usual personal computers.
Another example of a pure consumer program would be a meta-manager, which distribute
subtasks in parallel to the zoo with the ultimate aim of solving the game.

e Othello daemons: on the other hand, othello daemons are very altruist and share their CPU
cycles for the zoo. They are small utility programs or screen savers running on personal
computers, which continuously poll the zoo to get a position to solve, calculate it and send
the result back to the zoo. They should be written using a fast othello solver, and operate
in the background as transparently as possible on the computer on which they run (on idle
user time, or with a low CPU priority).

e Interactive clients: possibly the most exciting use of the zoo (but also the most difficult to
implement for program authors) would be to adapt existing othello programs to the zoo. The
adaptation could be two ways : first, they could use the idle user time (I mean as soon as
the othello engine is not used, for instance when the user is pondering on his/her next move
or browsing the Wthor database) to switch to daemon mode and contribute (transparently
for the user) to the zoo; secondly, it is possible to parallelize the alpha-beta algorithm used
in endgame search, using the zoo system to distribute the subtree calculations, to speed up
the user experience time when he most needs it.

How much of the total CPU power of the zoo will I get?

That question simplifies to: how can we be sure that the zoo system is fair between its users? It is
a tough task to find a good load balancing strategy when dispatching jobs. For instance, we don’t
want one master abusing resources of the zoo by sending too many jobs at the same time, or too
difficult jobs (=too long to solve, with too many empty squares), which would lead to starvation of
the other users of the zoo. One idea (not implemented yet) is to record the total CPU time that
each consumer has got in the last 20 minutes or so and affect jobs to different masters using some
sort of time balancing strategy.

Another point is the length of the jobs : as always with parallelism, too small and too large chunks
of work are inefficient.

- too small : trivial positions would typically waste everybody’s time because they could be solved
faster by the local program instead of using the network.

- too large : apart from the load balancing problem, there is the difficulty that the zoo is, in a sense,
unreliable : be they interactive clients (customized versions of WZebra or Cassio), daemons or
screensavers, calculators can cancel their calculations at any time (and we have to handle network
failure as well), so we probably shouldn’t launch long endgame solves because there would always
be a possibility of wasting resources.

What operating system does the zoo run on?

The zoo database is designed to be accessible with standard Internet protocols, so that clients on
different computers and different operating systems can post and send results to the zoo using
classic network technologies (telnet, sockets, HTTP request, etc.).

Security and redundancy

It is sometimes necessary, or at least benefic, to be able to double check the calculations made on a
grid by remote computers. It should be possible to send the same position twice, so that the same
position is solved by different calculators for the sake of verification.

Remark: this is achievable by the prototype of the zoo, which has a remanence of 15 minutes at the
moment. Since the positions are only kept for 15 minutes, it is possible to post jobs twice with a 30
minutes interval and get the endgame solves double-checked.

3 Getting connected to the zoo

3.1 Connecting

The test server for the OthelloZoo is accessible at the IP address 82.230.184.124 on port 80.
There is no authentification step: as soon as a client has established a connection, it can start to
send commands using the OthelloZoo protocol.

Since opening and closing a connection takes time and consume resources of the server, the pre-
ferred way to establish and use a connection to the OthelloZoo is via a permanent connection (as
implemented in telnet programs, for instance), using BSD sockets (or Windows sockets).

Remark: At the time of this writing, the address of the OthelloZoo server is fized (because the test
server is running on my personal computer). Maybe we should implement some sort of publication
scheme for the server address. The approach used by the BOINC project for distributed computing
1s interesting here, because it uses one level of redirection and allows to adjust the number of servers,
if necessary: they advocate putting a page in a fized position on the Web with special XML tags
(7scheduler”), each such tag containing the address of an active grid server; each time a client wants
to join the grid, he first downloads and parses this web page, gets the list of the active servers for the
grid project, and can connect to the grid on one of these servers (see hitp: //boinc. berkeley.
edu/ trac/wiki/ServerComponents# ThemasterURL).

3.2 Disconnecting

During a session, the server will disconnect any client which has not shown a sign of activity for
30 seconds. As a consequence, to avoid being disconnect, clients should send a simple KEEP_ALIVE
command to the server every 15 seconds.

At the end of a session, clients must send a STOP_ALL command (for a consumer client) or a I_.QUIT
command (for a calculator client) to the server. This will allow the server to take appropriate
measures and to release cleanly the resources the clients had taken. As soon as a client has sent its
quitting command on the network, it can close its half of the connection: there is no acknowledge-
ment phase.

3.3 The zoo server

The prototype of the OthelloZoo server was written as a PHP script connecting to a mySQL
database, but was suffering from charge congestion under heavy load. The current server is written
completely in Java, using the Apache MINA library from the Apache Foundation for the network
part, and the H2 Database Engine library for the implementation of the SQL database.

The Java language was chosen because it seems to provide the right balance between speed, re-
liability and portability : the jar file of the server can be executed on any computer with a java
machine, while the chosen libraries allows us to handle connections and database queries to the zoo
without any file access (everything is in memory).

3.4 Example code

[Stéphane: a portable wrapper around zebra, written in C with libcurl for the networking stuff 7]
[Jan: a wrapper around zebra in C#7]

http://boinc.berkeley.edu/trac/wiki/ServerComponents#ThemasterURL
http://boinc.berkeley.edu/trac/wiki/ServerComponents#ThemasterURL

4 The OthelloZoo protocol

Once they have established a connection to the zoo, clients can start sending requests to the
database. Each request consists of a single line command, and the zoo sends back an answer
consisting of one or more lines. The protocol is asynchronous and acknowledgement-free : clients
don’t have to wait for the results of a previous command before sending another command, and
there is no acknowledgement phase.

4.1 Command syntax : how to send action parameters to the zoo?

In this document, the description of commands will be typeset with the following typographical
presentation:

COMMAND-NAME (parameter-name) (parameter-name) (parameter-name)

For instance, one of the most useful command is the GET_WORK action, which asks the zoo to give
us a job, that is, a position to solve (it will be described in more details later in the manual). This
command will be typeset in this document as:

GET_WORK (asker)

However, when transmitting commands to the zoo database, you should use a URL-like syntax,
with the command name following the keyword 7action= , and the parameters separated by the
ampersand character & This means, for instance, that if you want, in your program, to use the
GET_WORK command above with a value of 1234 for the (asker) parameter, you will have to send the
following query to the zoo through the internet, with a linefeed character (ASCII #0A) to terminate
the line:

7action=GET_WORK&asker=1234

Note that the ’action’ keyword containing the command name should always appear first, but that
the order of the other parameters is free. For instance, these two lines represent the same query to
the zoo :

7action=GET_RESULTS&asker=333555777&date=120053636
7action=GET_RESULTS&date=120053636&asker=333555777

4.2 List of commands

This is the minimal list of commands to implement a master program, and their typical use:

ADD The master sends a job to the zoo. This action can be repeated to delegate
simultaneously several different jobs to the zoo.

GET_RESULTS | By polling the zoo every second, the master listens to the eventual new

results of his jobs (since a given date, chosen by the master).

STOP At any moment, the master can stop (cancel) a number of jobs he had pre-
viously sent to the zoo. All current calculators working on these jobs will stop.
STOP_ALL The master stops (cancels) all the jobs he had previously sent to the zoo.

This command should be sent by a master program when he quits.

This is the minimal list of commands to implement a calculator program, and their typical use:

GET_WORK The calculator asks for work, and gets a job in return from the zoo.
STILL_NEEDED | The calculator polls the zoo (every second) to know if the job he is
calculating is still needed. If it is no longer needed, the calculator stops
its current calculation and can then ask a new job to the zoo.
I_.CANT_SOLVE | The calculator warns the zoo that he can’t finish a job, so that the
zoo may decide to give the job to someone else.

SEND_SCORE | The calculator sends back the score of a finished job to the zoo.
1_.QUIT The calculator warns the zoo that he must quit.

Some sequences of commands happen repeatingly when writing and using a zoo client (either master
or calculator), because they correspond to common pattern usages of a program logic. To use the
network more efficiently, the OthelloZoo protocol proposes the following combined commands, which
allows clients to emulate the effects of successive commands in a single transaction:

ADD_AND_GET_RESULTS combination of ADD and GET_RESULTS
STOP_AND_GET_RESULTS combination of STOP and GET_RESULTS
ASKER_TAKES_IT_AND_GET_RESULTS | combination of ASKER_TAKES_IT and GET_RESULTS
GET_WORK_AND_GET_RESULTS combination of GET_WORK and GET_RESULTS
STILL_LNEEDED_AND_GET_RESULTS combination of STILL.LNEEDED and GET_RESULTS
SEND_SCORE_AND_GET_WORK combination of SEND_SCORE and GET_WORK

The following two commands can be used to check the network and keep permanent connections
alive. They are useful both for master and calculator clients.

PING pings the server to know if the othello zoo is available
KEEP_ALIVE | asks the server not to close the connection; this command should be issued at
intervals of about 15 seconds, or 15 seconds after the last command to the server.

Special commands (advanced topics and debugging):

ASKER_TAKES_IT | master warns the zoo that he decides to calculate himself one of the
jobs he had added. A calculator working on that job is *not* interrupted.

CHECK_PREFETCH | calculator verifies the usefulness of pipelined jobs (cf pipelining, [ref needed]).

VIEW human wants to see the OthelloZoo database in a browser.

4.3 Results set : how to read the results of the zoo?

We have seen that each command is sent as a single line of text to the server. The server will
send back its answer as a stream of one or several lines of text separated by a linefeed character
(ASCII #04). The protocol is asynchronous : clients don’t have to wait for the results of a previous
command before sending another command (in other words, there is no acknowledgment phase in
the protocol).

The results sent back by the zoo for each transaction are basically a set of positions with their
properties, each position in the set being prefixed by a status keyword telling the client how it
should handle the position.

The list of status keyword in response to the GET_RESULTS command is the following :

CALCULATED : this keyword indicates that the submitted position has been solved, and gives
back the result. This is good news !

INCHARGE : this keyword indicates that the zoo has managed to dispatch the position to a
calculator, which has taken the responsibility to solve it.

COULDNTSOLVE : this keyword indicates that the calculator which had previously taken
the position to solve it has released the position to the zoo. The zoo will now try to give the
position to another calculator.

DELETED : this keyword indicates that the position has disappeared from the zoo (because
the master canceled the job).

PREFETCHED : this keyword indicates that the position has been prefetched to a calculator
by the zoo (see chap. pipelining).

4.4 An example of session

Here is an example of a telnet session showing some of the basic commands (PING and GET_WORK)
and their results, when the database is empty. Before we issue the second GET_'WORK command,
another program has connected to the zoo and added some positions for solve in the database, so
that the second GET_-WORK gives us a job to solve. Note the syntax of the results, where results
fields are separated by spaces. Finally, the last line shows that the zoo server has disconnected us
automatically after 30 seconds of inactivity.

telnet 82.230.184.124 80

Trying 82.230.184.124...
Connected to 82.230.184.124.
Escape character is ’7]°.

7action=PING
PING ANSWERED
END.

?action=GET_WORK&asker=24353646
NO JOB !
NO PREFETCH !
END.

7action=VIEW
<HTML><HEAD></HEAD><BODY>DATABASE IS EMPTY</BODY></HTML>
END.

?action=GET_WORK&asker=24353646
JOB pos=0-00000000000XX0000XX0X00X0X0XX00XX000X0000X0X00-000XX-0-XXXXX--X window=-64,64 cut=95 depth=6 hash=60529449

PREFETCH pos=0-00000000000XX0000XX0X00X0X0XX00XX000X0000X0X00-000XX-0-XXXXX--X window=-7,6 cut=100 depth=6 hash=1433001
END.

Connection closed by foreign host.

5 Commands reference

5.1 Parameters common to many commands

The OthelloZoo protocol is all about sending positions from one othello program to another, and
information about these positions. As a consequence, it is no surprise that a lot of the commands
share a small set of common parameters. This list of these common parameters is explained here
(note that we will explain the specific parameters for other commands when they appear):

(asker) : a unique (31 bits, positive) integer, identifying for the zoo the computer and the instance
of the program which sends the command. This should be unique to a session : if the same
client runs on two different computers at the same time (or on two different cores on the
same computer), each should connect to the zoo using a different (asker) parameter. One
way to achieve this is to use a random generator at program launch time to generate the
number, with the random seed carefully initiated with the sum of the process serial number
of the client and the number of microseconds since the start of the computer.

Remark : discuss the possibility to ask the server for a wvalid ID at connection time? Less
time efficient, but could lead to less collisions; could also lead to a false sense of security in
case of race conditions.

Example: &asker=31415926

(pos) : a 65-character string description of an othello position. The first 64 characters contain
the contents of the squares in row-wise order, ie al-bl-cl-...-g8-h8, while the 65th character
indicates whose turn it is to move. Black discs are denoted by X, white discs are denoted
by 0 and empty squares are denoted by -.

Example: &pos=------------—--—-mm——— 0X-----—- X0-————————

(depth) : the number of empty squares in the position.
Example: &depth=25

(window) : the [alpha,beta] window of the required solve of the position. Alpha and beta can
be any integers in the range —64..64, provided that —64 < a < g < 64. For instance, a
complete solve will be [—64,64], a win/loss/draw solve will be [-1,41], while a [6,7] solve
checks if the position is winning by at least +8.

Example: &window=6,7

(cut) : the probcut selectivity level for the required solve of the position, denoted as an integer in
the range 0..100. A value of 100 means a result sure at 100%, while a value of 0% means
'mostly unreliable’. The proposed sequence of levels is a subset of the levels used in WZebra:
57,72,83,91,95,99,100. Since the sequence of probcut levels can vary among calculators, if
calculators can’t answer exactly at the required level of selectivity, they should use the next
level of probcut in their internal sequence to calculate the answer of the job.

Example: &cut=83 note : the % sign is NOT included.
&cut=100 note : the % sign is NOT included.

(hash) : a unique (31 bits, positive) hash value, identifying a job sent to the zoo.

This hash value should (a) be unique for each (pos, depth, window, cut) quadruplet, so that
a master can send, for instance, the same position to solve with different alpha-beta windows
or different selectivity levels: the different alpha-beta windows and different selectivity levels
will make different jobs; (b) be uniformally distributed in the range 1..2147483647. The
proper way to get these two properties is to use the 31 least significant bits of a (good) hash
function on the text string (pos + depth + window + cut).

We recommand to take the absolute value of the Jenkins hash function given in the appendix.

10

5.2 Basic master actions

5.2.1 the ADD action

Syntax: ADD (pos) (window) (cut) (depth) (hash) (priority) (asker)
Usage: master sends a job to the zoo.

5.2.2 the STOP action

Syntax: STOP (asker) (hash) (h2) (h3) (h4) (h5) (h6) (h7) (h8) (h9) (h10)

Usage: master stops (cancels) a number of jobs he had previously sent to the zoo (it is possible
to stop up to 10 jobs with this command). Any potential calculators working on theses jobs will
stop.

5.2.3 the STOP_ALL action

Syntax: STOP_ALL (asker)

Usage: master stops and cancels all the jobs he had previously sent to the zoo. Should be sent
by a master program when he quits.

5.2.4 the GET_RESULTS action

Syntax: GET_RESULTS (asker) (date)

Usage: master listens to the eventual new results (since the given date) of the jobs he has sent
to the zoo.

5.3 Basic calculator actions

5.3.1 the GET_WORK action

Syntax: GET_WORK (asker)

Usage: calculator gets a job from the zoo.

5.3.2 the STILL_NEEDED action

Syntax: STILL.NEEDED (pos) (window) (cut) (depth) (hash) (asker)
Usage: calculator asks the zoo if the job he is calculating is still needed.
5.3.3 the I.CANT_SOLVE action

Syntax: 1.CANT_SOLVE (pos) (window) (cut) (depth) (hash) (asker)

Usage: calculator warns the zoo that he can’t finish a job.

11

5.3.4 the SEND_SCORE action

Syntax: SEND_SCORE (pos) (window) (cut) (depth) (hash) {asker) (score) (moves) (time)

Usage: calculator sends back the score, optimal moves and time of a finished job to the zoo. The
time parameter is the CPU time taken by the calculator to solve the position.

5.3.5 the I_.QUIT action

Syntax: 1.QUIT (asker)

Usage: calculator warns the zoo that he quits.

5.4 Advanced actions
5.4.1 the ADD_AND_GET_RESULTS action

Syntax: ADD_AND_GET_RESULTS (pos) (window) (cut) {depth) (hash) (priority) (asker) (date)

Usage: combination of ADD and GET_RESULTS. Note that the list of parameters, compared to
the normal ADD action, has an added required date parameter, because the GET_RESULTS action
takes a date parameter. This remark will also be true for the other combined actions : their set of
parameters will be, most of the time, the union of the parameters of the actions they combine.

5.4.2 the STOP_AND_GET_RESULTS action

Syntax: STOP_AND_GET_RESULTS (hash) {asker) (date)

Usage: combination of STOP and GET_RESULTS. In the current implmentation, this action can
stop only one job at a time.

5.4.3 the ASKER_TAKES_IT action

Syntax: ASKER_TAKES_IT (asker) (hash)

Usage: the master (asker) warns the zoo that he decides to calculate himself the job (hash) which
he had previously added to the zoo. A calculator working on that job is *not* interrupted.

5.4.4 the ASKER_TAKES_IT AND_GET_RESULTS action
Syntax: ASKER_TAKES_IT_AND_GET_RESULTS (asker) (hash) {date)
Usage: combination of ASKER_TAKES_IT and GET_RESULTS
5.4.5 the GET_'WORK_AND_GET_RESULTS action

Syntax: GET_WORK_AND_GET_RESULTS (asker) (date)

Usage: combination of GET_'WORK and GET_RESULTS. Useful to write a client that is at the same
time a master and a calculator.

12

5.4.6 the STILL NEEDED_AND_GET_RESULTS action

Syntax: STILL.NEEDED_AND_GET_RESULTS (pos) (window) {cut) (depth) (hash) {asker) (date)
Usage: combination of STILL_NEEDED and GET_RESULTS

5.4.7 the SEND_SCORE_AND_GET_WORK action

Syntax: SEND_SCORE_AND_GET_WORK (pos) (window) (cut) (depth) (hash) (priority) (asker)
Usage: combination of SEND_SCORE and GET_WORK

5.4.8 the PING action

Syntax: PING

Usage: pings the server to know if the othello zoo is available

5.4.9 the KEEP_ALIVE action

Syntax: KEEP_ALIVE (asker)

Usage: asks the server not to close the connection; this command should be issued at intervals
of about 15 seconds.

5.4.10 the CHECK_PREFETCH action

Syntax: CHECK_PREFETCH (asker) (hash) (h2) (h3) (h4) (h5) (h6) (h7) (h8) (h9) (h10)

Usage (for pipelining): calculator verifies the usefulness of pipelined jobs (cf pipelining, [ref
needed]). The hash descriptor of the first position (the (hash) parameter) is required, but the hash
descriptors of the other positions (parameters (h2) to (h10)) are optionnal.

5.4.11 the VIEW action

Syntax: VIEW

Exceptional usage: displays a web page with a dump of all the records of the SQL database
implementing the OthelloZoo on the server. This is for debugging and monitoring only, as it tends
to generate huge pages and could easily break the server down if used often. Programs should use
the GET_RESULTS action and its variants to selectively poll for new results.

13

6 Appendix

6.1 Jenkins’s hash function, in Pascal

// Hash function using Jenkins algorithm, see :
// http://en.wikipedia.org/wiki/Hash_table
// http://www.burtleburtle.net/bob/hash/doobs.html

//
function HashString(const s : String) : SInt32;
var hash : UInt32; // unsigned 32 bits integer
i,length : SInt32; // signed 32 bits integer
begin
hash := 0;
length := LENGTH_OF_STRING(s);

for i := 1 to length do

begin
hash := hash + ord(s[i]); // ord(s[i]) is the ascii value of the i-th character
hash := hash + (hash shl 10); // shl is shift left
hash := hash XOR (hash shr 6); // shr is shift right
end;
hash := hash + (hash shl 3);
hash := hash XOR (hash shr 11);
hash := hash + (hash shl 15);

HashString := SInt32(hash);
end;

6.2 Jenkins’s hash function, in PHP

// Hashes a string using Jenkins algorithm, see :
// http://en.wikipedia.org/wiki/Hash_table
// http://www.burtleburtle.net/bob/hash/doobs.html
//
function my_hash_string($my_string) {
$value = 0;
$string_length = strlen($my_string) ;

for ($i = 0; $i < $string_length ; $i++) {
//var_dump ($value) ;

$value += ord($my_string[$il);
$value = ($value & OxFFFFFFFF);

$value += ($value << 10);
$value = ($value & OxFFFFFFFF);

14

$value ~= ($value >> 6);
$value = ($value & OxFFFFFFFF);
}

$value += ($value << 3);

$value = ($value & OxFFFFFFFF);
$value "= ($value >> 11);
$value = ($value & OxFFFFFFFF);

$value += ($value << 15);
$value ($value & OxFFFFFFFF);

// convert to 32 signed integer

// probably not portable on PHP compiled without 64 bits support

// double-check this when using this file on a new internet provider :

if ($value > Ox7FFFFFFF) {
$value = $value - 1073741824;
$value = $value - 1073741824;
$value $value - 1073741824;
$value $value - 1073741824;

¥

//var_dump($value) ;

return $value;

// tests my_hash_string
function test_hash_string() {

echo ""." ===> " . my_hash_string("")."
";

echo "t"." ===> " .my_hash_string("t")."
";

echo "to"." === ".my_hash_string("to")."
";

echo "tot"." ===> ".my_hash_string("tot")."
";

echo "toto"." ===> ".my_hash_string("toto")."
";

echo "toto "." ===> ".my_hash_string("toto ")."
";
echo "toto e"." ===> ".my_hash_string("toto e")."
";
echo "toto es"." === ".my_hash_string("toto es")."
";

// note : the expected output is the following,

// any difference means there is a problem
// with the handling of 32 bits integers

// in the implementation of PHP we are using
// ===> (

// t ===> 1232605903

// to ===> -29755991

// tot ===> 360997608

// toto ===> 1735262235

// toto ===> 145643908

// toto e ===> -1371167412
// toto es ===> 2070874248

15

6.3 Jenkins’s hash function, in Java

// Hash function using Jenkins algorithm, see :
// http://en.wikipedia.org/wiki/Hash_table
// http://www.burtleburtle.net/bob/hash/doobs.html
//
// We will do our arithmetics in 64-bits signed integers,
// because there are no 32-bits unsigned integers in Java.
//
private static int Jenkins_hash_string(String my_string) {
long value = 0;
int i;
long string_length = my_string.length();

for (i = 0; i < string_length ; i++) {

value += (long) (my_string.charAt(i));
value = (value & Oxffffffffl);

value += (value << 10);
value = (value & OxfffffffflL);

value “= (value >> 6);
value = (value & OxffffffffL);

value += (value << 3);
value = (value & Oxffffffffl);

value "= (value >> 11);
value = (value & Oxffffffffl);

value += (value << 15);
value = (value & Oxffffffffl);

// convert to 32 signed integer
if (value > OxfffffffflL) {
value = value - 1073741824;
value = value - 1073741824;
value = value - 1073741824;
value = value - 1073741824;
}

return (int)value;

16

	Introduction
	Architecture
	Getting connected to the zoo
	Connecting
	Disconnecting
	The zoo server
	Example code

	The OthelloZoo protocol
	Command syntax : how to send action parameters to the zoo?
	List of commands
	Results set : how to read the results of the zoo?
	An example of session

	Commands reference
	Parameters common to many commands
	Basic master actions
	the ADD action
	the STOP action
	the STOP_ALL action
	the GET_RESULTS action

	Basic calculator actions
	the GET_WORK action
	the STILL_NEEDED action
	the I_CANT_SOLVE action
	the SEND_SCORE action
	the I_QUIT action

	Advanced actions
	the ADD_AND_GET_RESULTS action
	the STOP_AND_GET_RESULTS action
	the ASKER_TAKES_IT action
	the ASKER_TAKES_IT_AND_GET_RESULTS action
	the GET_WORK_AND_GET_RESULTS action
	the STILL_NEEDED_AND_GET_RESULTS action
	the SEND_SCORE_AND_GET_WORK action
	the PING action
	the KEEP_ALIVE action
	the CHECK_PREFETCH action
	the VIEW action

	Appendix
	Jenkins's hash function, in Pascal
	Jenkins's hash function, in PHP
	Jenkins's hash function, in Java

